
How ALM Enhances the Value of Your 
Test Team
Application lifecycle management (ALM) provides beginning-to-end management of your 
software development project by providing tools to assist with handling communication, process,
and data. 

The product team is composed of a cross-section of departments, and members of the test team 
are key participants in any successful development project. Testers perform a number of 
important functions, including product verification of requirements, quality level assessment, 
standards validation, and feedback about process change.

As with any software development team, the test team benefits when automation can be used to 
help eliminate human error and reduce repetitive tasks. Although test tools have come a long 
way in supporting automation, the value of testing can be significantly improved when the 
testing function is integrated with ALM. For example, ensuring requirements have been 
addressed properly implies that there must be a proper level of integration between requirements 
management and test case management.

ALM spans team boundaries, allowing every team to provide more value as an active part of the 
entire project process. Combining an ALM tool with appropriate process enables clear 
communication among development teams.

Some key elements of most modern ALM tools can provide even better benefits. Sharing a 
common data repository, management UI, process engine, and management philosophy provides 
value to every team, and any improvements are made to both process and tool infrastructure, 
making it much easier to justify improvements. 

The Importance of Test Case Management
The test team is usually responsible for creating a repository of test cases that verifies a product's
functionality. It must be able to run and record the results of test cases against the product in its 
various operating environments. Ultimately, it is the recommendation of the test team that 
determines whether a product is ready to be released.

It used to be that most of a test team’s resources were consumed in actual functional testing. 
Now there is more focus on test automation, allowing more testing resources to be used for test 
case development, automation, and process improvement.

There are a number of primary and secondary test case categories when attempting to marry 
testing with configuration management. Summarized in table 1, these test case categories show 
that the test process touches many parts of the lifecycle.



Primary test categories

Black Box Verify product requirements.

White Box Verify the design (a.k.a. software requirements).

Change Verify a change package (i.e. a logical change to the software product).

Bug Reproduce defects and verify that the known defects are fixed.

Sanity Ensure basic sanity of a deliverable and its platform/infrastructure.

Stress Identify response of a system operated near the edge or outside of the product 
requirement’s envelope.

Beta Identify defects resulting from incomplete requirements, unforeseen use cases, and 
imperfect testing.

Secondary test categories

Regression Re-application of test cases to ensure all features still work (e.g. black box).

Feature Run a subset of black box testing focused on a particular feature.

Performance Run a subset of black box testing dealing with real-time issues.

Environment Run a subset of black box testing identifying the effect of a product on the 
environment (and vice versa).

Validation Run a subset of black box testing targeted to meeting specific, required standards.

Unit Run a mix of black box and white box testing at a card, module or subsystem level.

Alpha Initial beta testing is typically performed using an internal test site.

Table 1: Test case categories

For the most part, the primary test categories are used to introduce new test cases into the 
repository, while the secondary test categories repurpose (or reorganize) the existing test cases to
provide more targeted test coverage. These categories help to identify the scope of the test team 
function. There is plenty of data that needs to be collected, created, captured, organized, and 
summarized.



ALM Helps Organize Your Work
Modern ALM tools provide many of the capabilities not only to keep test cases organized, but 
also to retrieve, deliver, and collect test cases for a single task or purpose. These tools also have 
capabilities that make it easy to compare sets of test cases (or other artifacts) across builds and 
releases. This, in turn, provides more precise metrics that allow tracking of product quality as 
well as development team and process quality. For example, when the test case failure rate 
increases, it's nice to know that the primary factor was the introduction of new features that still 
needs some work.

In a silo, a test team can perform testing on a function quite well. But expose that silo to “the rest
of the farm” and suddenly management functions better. It has up-to-date test status information 
it needs to make a go/no-go decision. But having the ongoing, live feedback leading up to that 
decision, management has the ability to take action to preclude a no-go possibility. In my 
experience, all functions of ALM are improved by the continuous availability of test information.

If you have been through multiple application development lifecycles, you’ll undoubtedly agree 
that testing is not a standalone function. In an ALM environment, each ALM function 
contributes to the advancement of the testing process. In return, each ALM function benefits 
from these testing efforts. Consider the following ways that the various test categories interact 
with the wider range of ALM functions.

The Importance of Requirements Management
Requirements traceability is critical to any successful project. It is important to know that for 
every requirement, there is a valid set of test cases, and every test case verifies a product 
requirement. The classical requirements traceability matrix is a sparse matrix, which helps to 
visually assert this traceability. In practice, with thousands of test cases run against a product, the
visual benefit is really only useful in teaching about traceability. The ALM tool that spans both 
requirements management and test case management should supply the ability to query 
traceability for any subset of the requirements specification, as well as for any subset of the test 
case collection.

How Configuration Management Supports Build and Release 
Management

More than supporting requirements traceability, it is important to track the history of actually 
running each test case against each build and release. The shared data repository afforded by a 
modern ALM tool should provide easy query access to identify which test cases have 
successfully passed and which have failed during a given stream of release development.

Requirements typically change over time, and the test suite must change accordingly along with 
the software being tested. Configuration management is used to ensure that the right revisions of 
requirements, test cases, and software come together to test the builds leading up to a release.



Generally, test cases are either added to or removed from test case configurations. But there are 
many complex tests that require version and change control as development of the tests 
themselves evolve. This version and change control capability is already provided by modern 
ALM tools for software and their requirements.

As well, each configuration has optional components and variants that are part of the software 
and build configurations. Testing must take these options and variants into consideration. This is 
data that is tracked in any modern ALM tool and can be used to aggregate test results to assess 
the product quality for various components and variants.

Continuous integration requires a certain level of automated testing. The build and test functions 
of an ALM tool can help ensure that productive testing is automatically performed on each 
system build. This requires identification of the correct environment data setup followed by 
running of automated tests (which should not be too time consuming).

Typically, the data associated with a test case needs a few modifications to provide higher level 
benefits. A simple data field that rates the automation level and running time of a test case or test
suite can be used to help select the appropriate set of automated tests to be run against each 
build.

ALM tools can show the progression over time of test case automation. These tools can estimate 
expected test times—not only for automated test runs, but also for any test session, based on 
which test cases are selected and which features need to be tested.

Problem Tracking Is a Must-Have
Problem tracking (also known as defect and issue tracking) is another ALM function tightly 
integrated with test case management. In practice, each problem should have one or more test 
cases that are used to verify the existence of the problem in existing builds and to ensure the 
problem has been eliminated in more recent builds. Such test cases should be derived from the 
problem description as long as the problem has been described that it is easy to reproduce. 
Linking the test case to a problem report helps to ensure that all problems have sufficient test 
case coverage. Such a link also helps to automate the running of a test suite whose purpose is 
solely to ensure problem reports have been properly fixed.

The ALM tool should support queries such as “When was this problem fixed?” “Is this problem 
present in build xyz?” and so on. Ideally, a successful running of the test case should 
automatically advance the state of the problem to the fixed state. 

How Feature Tracking and Project Management Fit into ALM
A suite of tests is created based on a feature description document or requirements analysis 
document. It is important that test cases relate directly to the feature it has been created to test. 
This allows easy generation of feature-based test runs.

Success rates can be fed back into the ALM tool to help identify the actual completion level of 
the feature, at least from a functional perspective. Similarly, there are white box test suites 
derived from design documents that help test the design of an API, a module, or even a 
subsystem. Similar techniques can be used to help assess design-level completeness. 



This feedback helps improve project management accuracy. If a project manager asks an 
inexperienced developer about completion status for a task, the response is something like, 
“Eighty percent complete with 20 percent left to do.” It has been my experience that the last 20 
percent takes more than 20 percent of the estimated time. Tracking of test case feedback versus 
developer feedback also provides valuable feedback to the software developer. 

Project management is critical to test team planning. When PM is integrated across all ALM 
functions, resource allocation and schedule bottlenecks become easier to manage more 
effectively.

ALM Benefits Test Team Value
An ALM-wide approach provides commonality of tools and processes, as well as product-wide 
visibility of what is really going on throughout the software development lifecycle.

A good ALM tool capability tracks test sessions, allowing simple metrics to be developed for 
improving the test team's productivity over time. Some ALM tools have code search capabilities 
that can be used by the test team for searching through test cases. Finally, most ALM tools can 
organize and report hierarchically. This capability is especially helpful across a changing 
landscape of new product releases, variant products, and evolving test case content.

The intangible value that results from increased team-wide communication of all ALM 
information is not to be underestimated. The test team feels more a part of the product team. The 
rest of the product team is awakened to the various roles of the test team. And as they become 
more aware, there are efforts to improve the process. Developers see the benefit of formally 
cataloguing their own tests and passing them on to the test team, both for black box and white 
box testing. Configuration management personnel identify the need for developers to annotate 
software updates as a result of tests that have changed along with test results. The entire team is 
educated on how to define problem reports so that each problem is easily tested.

It is important to identify ALM tools that provide the capabilities allowing easy and ongoing 
process customization, shared and extensible data schema, and customization of the UI on a role-
specific basis. Tools must be responsive, add noticeable value to each user, and support ALM-
wide automation. Once these basics are covered, there is no end to the advances that can be 
achieved to improve the value of the test team and the entire product team.


	The Importance of Test Case Management
	ALM Helps Organize Your Work
	The Importance of Requirements Management
	How Configuration Management Supports Build and Release Management
	Problem Tracking Is a Must-Have
	How Feature Tracking and Project Management Fit into ALM
	ALM Benefits Test Team Value

